
Module 2 
Polynomial Functions 

 
 
 

What this module is about 
 

 This module is about finding the zeros of polynomial functions of degree 
greater than 2. In module 1, the factor theorem was introduced to you by simply 
stating, if zero is obtained as a remainder when c is substituted to the polynomial 
P(x), then the polynomial x – c is factor of P(x).  This time, you will learn different 
methods of finding the zeros of polynomial functions. 
 
 
 

  What you are expected to learn 
 
 This module is designed for you to find the zeros of polynomial functions 
of degree greater than 2 by: 
 

a. Factor Theorem 
b. factoring 
c. synthetic division 
d. depressed equations 

 
 
 

   How much do you know 
 

1. How many zeros do the polynomial function f(x) = 2x5 – 3x4 – x3 + 2x2 + x 
– 3 have? 

2. How many roots do the polynomial equation 6x4 +  11x3 + 8x2 – 6x – 4 = 0 
have? 

3. Determine the zeros of the polynomial function F(x) = x(x – 3)2(x + 1)(2x – 
3). 

4. What are the possible rational zeros of  p(x) = x4 – 9x3  + 23x2 – 15? 
5. What are the possible rational roots 3x5 – x4 + 6x3 – 2x2 + 8x – 5 = 0? 
6. Find all the zeros of h(x) = x3 – 10x2 + 32x – 32. 
7. Solve the polynomial equation x4 – 6x3 – 9x2 + 14x = 0 using synthetic 

division. 
8. Find all zeros of g(x) = x3 – 2x2 – x + 2 using depressed equations. 
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9. One of the roots of x3 – 12x2 – 8x + 96 = 0 is 2 2 . What are the other 
roots? 

10. One of the zeros of p(x) = 2x4 – x3 + 25x2 – 13x – 13 is i 13− . Find the 
other zeros. 

 
 
 
    What you will do 
 

Lesson 1 
 

Number of Roots Theorem 
 
 

 The Fundamental Theorem of Algebra which is attributed to Karl Freidrich 
Gauss of Germany states that “Every polynomial equation in one variable has at 
least one root, real or imaginary”.  The next theorem tells us of the exact number 
of roots of polynomial equation of degree n: 

 
 “Every polynomial equation of a degree n ≥ 1 has exactly n roots.” 
 

Examples: 
 
Determine the number of roots of each polynomial equation. 
 
1. 3x7 + 8x5 – 4x – 1 = 0 

 
3x7 + 8x5 – 4x – 1 = 0 is of the seventh degree. Hence it has 7 roots. 
 

2. (x – 1)(2x + 1)3(2x – 5)2 = 0 
 
 (x – 1)(2x + 1)3(2x – 5)2 = 0 is of the sixth degree. Hence it has 6 roots. 
 

3. x(x – a)m(x + b)n = 0 
 
 x(x – a)m(x + b)n = 0 is of the (1 + m + n)th degree. Hence it has 1 + m + n 
roots. 

 
Try this out  

 
Determine the number of roots of each polynomial equation. 

 
Set A 

1. x5 + 2x3 – x – 3 = 0 
2. -x7 + 2x6 – 4x5 – x2 + 2x – 1 = 0 
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3. 2 + x2 – 3x4 – x6 – x8 – 2x10 = 0 
4. (x – 5)(x + 2)3(2x -1)2 = 0 
5. x2(x + 1)(x – 3)4 = 0 

 
Set B 

1. 8x3 – 9x + 1 = 0 
2. -4x7 – 6x6 + x2 – 2x + 5 = 0 
3. (x – 2)(x + 9)3x4 = 0 
4. 3x3(x + 8)2(x2 – 4) = 0  
5. (x2 – 1)(x3 + 1) = 0 

 
Set C 

1. 
3

21x x (x 2)(x 1) 0
2

 + + + = 
 

 

2. 4 9 3x x (2x 3) 0
4 2

 − − = 
 

 

3. (x2 – 2x + 1)(x3 – 1)(x2 + x – 6) = 0 
4. x(x2 + 2)2(x2 + 2x – 1)2 = 0 
5. -9x4(8 – x3)2 = 0 

 
 

Lesson 2 
 

Determining the Zeros of Polynomial Functions in Factored Form 
 
 

Recall that a zero of p(x) is the value of x that will make the function 0. 
The zeros of a polynomial function in factored form are determined by equating 
each factor to 0 and solving for x. 

 
Examples: 

 
Determine the zeros of each polynomial function. 
 
1. f(x) = x(x + 3)(x – 2) 

 
 Equate each factor to 0 and solve for x. 
 
  x = 0 
  x + 3 = 0, x = -3 
  x – 2 = 0, x = 2 
 
 Therefore, the zeros of f(x) are 0, -3, and 2. 
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2. y = (5x – 2)(2x + 1)(-3x – 4) 
 

Equate each factor to 0 and solve for x. 

  5x – 2 = 0, x = 2
5

 

  2x + 1 = 0, x = 1
2

−  

  -3x – 4 = 0, x = 4
3

−  

Therefore, the zeros of f(x) are 2
5

, 1
2

− , and 4
3

− . 

 
3. g(x) = (x + 4)3(x – 3)(2x – 1)2 
 
g(x) has 3 factors of (x + 4), 1 factor of (x – 3) and 2 factors of (2x – 1). Thus, 

the zeros of g(x) are: -4 of multiplicity 3; 3 of multiplicity 1; and 1
2

 of multiplicity 2. 

 
4. h(x) = (x2 – 4)(x2 – 3x – 28) 

 
Equate each factor to 0 and solve for x. 
 

x2 – 4 = (x + 2)(x – 2) = 0, x = -2 and x = 2 
 x2 – 3x – 28 = (x – 7)(x + 4) = 0, x = 7 and x = -4 

 
Thus, the zeros of h(x) are -2, 2, 7, and -4. 

 
 

Try this out  
 

Determine the zeros of each polynomial function. 
 
Set A 

1. f(x) = x(x + 4)(x – 2) 
2. g(x) = -x(x + 7)(x – 1) 
3. h(x) = (4x – 5)(2x + 3)(x – 3) 
4. F(x) = x(4 – 3x)(1 – x) 
5. G(x) = x(x + 3)(3x + 1) 

 
Set B 

1. F(x) = (x – 8)5(x + 2)3 
2. G(x) = (5x + 1)6(2x – 7)4 
3. H(x) = x(5 – x)(2 – 3x)2 
4. f(x) = x2(2x – 3)(x + 4)3(3x – 7) 
5. g(x) = -7x3(x – 4)(5x + 2)4(x -1)2 
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Set C 
1. h(x) = x(x + 3)(2x – 9)(3x + 1) 
2. k(x) = (x2 – 1)(4x2 – 4x + 1) 
3. p(x) = (x2 + 7x + 10)(9x2 – 12x) 
4. y = (2x3 + 3x2 – 5x)(12x2 + 34x + 14) 
5. y = (-2x2 – x + 3)(12x2 + 23x + 5) 

 
 

Lesson 3 
 

The Rational Roots Theorem 
 
 

The next theorem specifies a finite set of rational numbers where the roots 
of a polynomial equation can be chosen. 

 

 “If a rational number L
F

 in lowest terms is a root of the polynomial 

equation anxn + an - 1xn – 1 + an - 2xn – 2 + … + a2x2 + a1x + a0 = 0, where an, an – 1,  an 

– 2, …, a2, a1, a0 are integers, then L is a factor of a0 and F is a factor of an.” 
 
 The Rational Roots Theorem states that “Any rational root of the 

polynomial equation xn + an - 1xn – 1 + an - 2xn – 2 + … + a2x2 + a1x + a0 = 0, where an 

– 1, an – 2, … , a2, a1, a0 are integers, is an integer and is a factor of a0.” 
 

Examples: 
 
List all possible zeros of the given polynomial function. 
 
1. f(x) = x3 – 6x2 + 11x – 6  

 
Since the coefficient of the highest degree term is 1, the possible rational 

zeros of f(x) are the factors of the constant term -6. That is, the possible 
rational zeros are ±1, ±2, ±3, and ±6. 

 
2. g(x) = x4 – x3 –11x2 + 9x + 18 

 
Since the coefficient of the highest degree term is 1, the possible rational 

zeros of g(x) are the factors of the constant term 18. That is, the possible 
rational zeros are ±1, ±2, ±3, ±6, ±9 and ±18. 

 
3. h(x) = 2x4 + 9x3 + 11x2 – 4  

 
If we let L = the factors of -4: ±1, ±2, ±4, 
      and F = the factors of 2:  ±1, ±2.  
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Then 
F
L  are 1 1

1
± = ± , 1

2
± , 2 2

1
± = ± , 4 4

1
± = ± , and 4 2

2
± = ±   

 

or 
F
L  = ±1, ±2, ±4, 1

2
± . 

 
4. p(x) = 8x4 + 32x3 + x + 4  

 
L = the factors of 4: ±1, ±2, ±4  
F = the factors of 8: ±1, ±2, ±1, ±4, ±8  
 

The possible rational zeros 
F
L  are 1 1

1
± = ± , 1

2
± , 1

4
± , 1

8
± , 2 2

1
± = ± , 

2 1
2

± = ± , 2 1
4 2

± = ± , 2 1
8 4

± = ± , 4 4
1

± = ± , 4 2
2

± = ± , 4 1
4

± = ±  and 4 1
8 2

± = ±  

 

or 
F
L = ±1, 1

2
± , 1

4
± , 1

8
± , ±2, and ±4. 

  
 

Try this out  
 

    List all possible zeros of the given polynomial function. 
 
Set A 

1. f(x) = x3 – 4x2 – 2x + 5 
2. g(x) = x3 – 6x2 + 2x – 6  
3. h(x) = x3 – x2 – 5x – 3  
4. p(x) = x4 + 2x3 – 8x – 16  
5. y = 2x3 + 17x2 + 23x – 42  

 
Set B 

1. f(x) = x5 + x4 – x – 1  
2. g(x) = x4 + 32  
3. h(x) = 2x3 + 3x2 – 8x + 3   
4. p(x) = 3x3 + 13x2 + 9x + 20  
5. y = 4x4 + 16x3 + 9x2 – 32  

 
Set C 

1. f(x) = x3 – 7x2 – 15  
2. g(x) = 2x3 – x2 – 4x + 2  
3. h(x) = 3x3 – 2x2 + 3x – 2   
4. p(x) = 3x3 + 4x2 + 12x + 16  
5. y = 6x4 + x3 – 13x2 – 2x + 2  
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Lesson 4 

 
Determining the Zeros of Polynomial Functions Using the Factor 

Theorem 
 
 

The Factor Theorem states that “If p(c) = 0, then x – c is a factor of p(x).” 
This implies that c is a zero of p(x). 

 
To determine the rational zeros of a polynomial function from the list of all 

possible rational zeros using the Factor Theorem, evaluate the polynomial 
function using these possible zeros one at a time. If a zero was obtained after 
evaluating a particular rational zero, then you can say that that number is a zero 
of the polynomial 

 
Examples: 

 
Determine the rational zeros of the given polynomial function using the Factor 

Theorem. 
 
1. f(x) = x3 + 6x2 + 11x + 6 

 
There are 3 zeros, real or imaginary. According to the Rational Roots 

Theorem, the possible rational zeros are ±1, ±2, ±3, and ±6.     
 
 If x = -1, then f(x) = x3 + 6x2 + 11x + 6 becomes   
        f(-1) = (-1)3 + 6(-1)2 + 11(-1) + 6 
                   = -1 + 6 – 11 + 6 
                      = 0   
  
 -1 is a zero of f(x). 
 
 If x = 1, then f(x) = x3 + 6x2 + 11x + 6 becomes   
        f(1) = (1)3 + 6(1)2 + 11(1) + 6 
                     = 1 + 6 + 11 + 6 
                     = 24   
  
 1 is not a zero of f(x). 
 
 If x = -2, then f(x) = x3 + 6x2 + 11x + 6 becomes   
        f(-2) = (-2)3 + 6(-2)2 + 11(-2) + 6 
                   = -8 + 24 – 22 + 6 
                      = 0    
 
 -2 is a zero of f(x). 
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 If x = 2, then f(x) = x3 + 6x2 + 11x + 6 becomes   
        f(2) = (2)3 + 6(2)2 + 11(2) + 6 
                   = 8 + 24 + 22 + 6 
                      = 60  
  
 -1 is not a zero of f(x). 
 
 If x = -3, then f(x) = x3 + 6x2 + 11x + 6 becomes   
        f(-3) = (-3)3 + 6(-3)2 + 11(-3) + 6 
                   = -27 + 54 – 33 + 6 
                      = 0   
  
 -3 is a zero of f(x). 
 
  f(x) has only 3 zeros and we have already found 3. Thus the zeros are -

1, -2 and -3. 
 

2. g(x) = x4 – x3 – 11x2 + 9x + 18 
 
There are 4 zeros, real or imaginary. According to the Rational Roots 

Theorem, the possible rational zeros are ±1, ±2, ±3, ±6, ±9 and ±18.     
 
 If x = -1, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(-1) = (-1)4 – (-1)3 – 11(-1)2 + 9(-1) + 18 
                   = 1 + 1 – 11 – 9 + 18 
                      = 0    
 
 -1 is a zero of g(x). 
 
 If x = 1, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(1) = (1)4 – (1)3 – 11(1)2 + 9(1) + 18 
                   = 1 – 1 – 11 + 9 + 18 
                      = 16   
  
 1 is not a zero of g(x). 
 
 If x = -2, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(-2) = (-2)4 – (-2)3 – 11(-2)2 + 9(-2) + 18 
                   = 16 + 8 – 22 – 18 + 18 
                      = 2   
  
 -1 is not a zero of g(x). 
 
 If x = 2, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(2) = (2)4 – (2)3 – 11(2)2 + 9(2) + 18 
                   = 16 – 8  – 44 + 18 + 18 
                      = 0    
 
 2 is a zero of g(x). 
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 If x = -3, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(-3) = (-3)4 – (-3)3 – 11(-3)2 + 9(-3) + 18 
                   = 81 + 27 – 99 – 27 + 18 
                      = 0    
 
 -3 is a zero of g(x). 
 
 If x = 3, then g(x) = x4 – x3 – 11x2 + 9x + 18 becomes   
        g(3) = (3)4 – (3)3 – 11(3)2 + 9(3) + 18 
                   = 81 – 27 – 99 + 27 + 18 
                      = 0 
   
 3 is a zero of g(x). 
 
  g(x) has only 4 zeros and we have already found 4. Thus the zeros are   

-1, 2 -3 and 3. 
 

3. h(x) = 2x4 + 3x3 + 3x – 2  
 

There are 4 zeros, real or imaginary. The possible rational zeros are 1
2

± , 

±1 and ±2.     
 

  If x = 1
2

− , then h(x) = 2x4 + 3x3 + 3x – 2 becomes   

        h 1
2

 − 
 

= 2
41

2
 − 
 

 + 3
31

2
 − 
 

 + 3 1
2

 − 
 

 – 2 

                       = 1
8

 – 3
8

  – 3
2

 – 2 

                          = 15
4

−   

  

  1
2

−  is not a zero of h(x).    

 

 If x = 1
2

, then h(x) = 2x4 + 3x3 + 3x – 2 becomes   

        h 1
2

 
 
 

= 2
41

2
 
 
 

 + 3
31

2
 
 
 

 + 3 1
2

 
 
 

 – 2 

                    = 1
8

 + 3
8

  + 3
2

 – 2 

                       = 0    

 1
2

 is a zero of h(x). 
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 If x = -1, then h(x) = 2x4 + 3x3 + 3x – 2 becomes   
        h(-1) = 2(-1)4 + 3(-1)3 + 3(-1) – 2 
                    = 2 – 3 – 3 – 2 
                       = -6    
 
 -1 is not a zero of h(x). 
 
 If x = 1, then h(x) = 2x4 + 3x3 + 3x – 2 becomes   
        h(1) = 2(1)4 + 3(1)3 + 3(1) – 2 
                    = 2 + 3 + 3 – 2 
                       = 6    
 
 1 is not a zero of h(x). 
 
 If x = -2, then h(x) = 2x4 + 3x3 + 3x – 2 becomes   
        h(-2) = 2(-2)4 + 3(-2)3 + 3(-2) – 2 
                    = 32 – 24 – 6 – 2 
                       = 0   
  
 -1 is a zero of h(x). 
 
 If x = 2, then h(x) = 2x4 + 3x3 + 3x – 2 becomes   
        h(2) = 2(2)4 + 3(2)3 + 3(2) – 2 
                    = 32 + 24 + 6 – 2 
                       = 60 
 
 2 is not a zero of h(x). 
 
g(x) has 4 zeros and we have already used all possible rational zeros. We 

found only 2 rational zeros. This indicates that there are only 2 rational zeros. 
The other 2 zeros are not rational; they may be irrational or imaginary. 
(Irrational and imaginary zeros will be discussed in the succeeding lessons.) 

Thus the only rational zeros are 1
2

 and -2. 

 
Try this out  

 
Determine the rational zeros of the given polynomial function using the Factor 

Theorem. 
 
Set A 

1. f(x) = x3 + 2x2 – 5x – 6 
2. g(x) = x3 + 4x2 + x – 6 
3. h(x) = x3 + 3x2 – 4x – 12 
4. p(x) = x3 – x2 – 10x – 8 
5. y = x3 + x2 – x – 1 
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Set B 

1. f(x) = x3 – 4x2 + x + 6 
2. g(x) = x3 – 5x2 – 2x + 24 
3. h(x) = x3 – 3x2 – 4x + 12 
4. p(x) = x3 – 6x2 + 5x + 12 
5. y = x3 – 5x2 – x + 5 

 
Set C 

1. f(x) = x3 – x2 – x + 1 
2. g(x) = 2x3 – 11x2 – 8x + 12 
3. h(x) = 3x3 – 2x2 - 27x + 18 
4. p(x) = 4x4 – 5x2 + 1   
5. y = 2x4 + 9x3 + 6x2 – 5x – 6 

 
 

Lesson 5 
 

Determining the Zeros of Polynomial Functions by Factoring 
 
 

 The zeros of a polynomial function can be determined easily if the 
polynomial is in factored form. But the problem arises when the polynomial is 
expressed otherwise. The polynomial must be factored (if it is factorable) using 
techniques learned in elementary algebra.    

 
Examples: 

 
 Determine the rational zeros of the given polynomial function by factoring. 
 
1. f(x) = x3 – 3x2 – 6x + 8  

 
f(x)  = x3 – x2 – 2x2 – 6x + 8   Using factoring by grouping.  
       = (x3 – x2) – (2x2 + 6x – 8) 
       = x2(x – 1) – 2(x2 + 3x – 4) 
       = x2(x – 1) – 2(x + 4)(x – 1)  
       = (x – 1)[x2 – 2(x + 4)] 
       = (x – 1)(x2 – 2x – 8) 
       = (x – 1)(x + 2)(x – 4)     
 

x - 1 = 0  x + 2 = 0 x – 4 = 0 Equate factors to zero 
      x = 1        x = -2       x = 4 
 

Hence, the zeros of f(x) are 1, -2, and 4 
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2. g(x) = x3 + 2x2 – 5x – 6  
 
g(x) = x3 + (x2 + x2) – 5x – 6               Using factoring by grouping. 
       = (x3 + x2) + (x2 – 5x – 6) 
       = x2(x + 1) + (x + 1)(x – 6) 
       = (x + 1)[x2 + (x – 6)] 
       = (x + 1)(x2 + x – 6) 
       = (x + 1)(x + 3)(x – 2) 
 

x + 1 = 0  x + 3 = 0 x – 2 = 0 Equate factors to zero 
       x = -1        x = -3        x = 2 
 
Hence, the zeros of g(x) are -1, -3, and 2. 
 

3. h(x) = x4 + 4x3 + x2 – 6x 
 

  h(x) = x(x3 + 4x2 + x – 6)  Using common monomial factoring 
         = x(x3 + 2x2 + 2x2 + x – 6) Factoring by grouping 

       = x[(x3 + 2x2) + (2x2 + x – 6)] 
       = x[x2(x + 2) + (x + 2)(2x – 3)] 
       = x{(x + 2)[x2 + (2x – 3)]} 
       = x[(x + 2)(x2 + 2x – 3)] 
       = x(x + 2)(x + 3)(x – 1) 
 
 x = 0 x + 2 = 0 x + 3 = 0  x – 1 = 0 Equate factors to 0. 
         x = -2       x = 1       x = 1 
 
Hence, the zeros of h(x) are 0, -2, -3, and 1. 

     
Try this out  

 
Determine the rational zeros of the given polynomial function by factoring. 

 
Set A 

1. f(x) = x3 + 3x2 – 4x – 12 
2. g(x) = x3 + 2x2 – 5x – 6 
3. h(x) = x3 – x2 – 10x – 8 
4. p(x) = x3 + 4x2 + x – 6 
5. y = x3 + x2 – x – 1 

 
Set B 

1. f(x) = x3 – 6x2 + 5x + 12 
2. g(x)= x3 – 3x2 – 4x + 12 
3. h(x) = x3 – 5x2 – 2x + 24 
4. p(x) = x3 – 3x2 – 4x + 12 
5. y = x3 – x2 – x + 1 
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Set C 

1. f(x) = x3 – 4x2 + x + 6 
2. g(x) = 3x3 – 2x2 + 3x – 2 
3. h(x) = 2x3 – x2 – 4x + 2 
4. p(x) = 2x4 + 9x3 + 6x2 – 11x – 6 
5. y = 4x4 – 5x2 + 1  

 
 

Lesson 6 
 

Determining the Zeros of Polynomial Functions by Synthetic 
Division 

 
 

 Synthetic division can also be used in determining the zeros of a 
polynomial function. Recall the when the remainder of a polynomial function f(x) 
when divided by x – c is 0, then c is a zero of f(x).    

 
Examples: 
 
Determine the rational zeros of the given polynomial function using synthetic 

division. 
 
1. f(x) = x3 + 6x2 + 11x + 6 

 
There are 3 zeros, real or imaginary. According to the Rational Roots 

Theorem, the possible rational zeros are ±1, ±2, ±3, and ±6. 
 
 If f(x) is divided by x + 1,  
 
   1 6 11 6 -1 
    -1 -5 -6 
   1 5 6 0 
 
 Since the remainder is 0, -1 is a zero of f(x). 
 
 If f(x) is divided by x – 1,  
 
   1 6 11 6 1 
    1 7 18 
   1 7 18 24 
 
 Since the remainder is not 0, -1 is not a zero of f(x). 
 
 If f(x) is divided by x + 2,  
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   1 6 11 6 -2 
    -2 -8 -6 
   1 4 3 0 
 
  Since the remainder is 0, -2 is a zero of f(x). 
 
 If f(x) is divided by x – 2,  
 
   1 6 11 6 2 
    2 16 54 
   1 8 27 60 
 
  Since the remainder is not 0, 2 is not a zero of f(x). 
 
 If f(x) is divided by x + 3,  
 
   1 6 11 6 -3 
    -3 -9 -6 
   1 3 2 0 
 
  Since the remainder is 0, -3 is a zero of f(x). 
 

 f(x) has only 3 zeros and we have already found 3. Thus the zeros  are -1, 
-2 and -3. 

 
2. h(x) = 2x4 + 3x3 + 3x – 2  

 

There are 4 zeros, real or imaginary. The possible rational zeros are 1
2

± , 

±1 and ±2.     
 

If h(x) is divided by x + 1
2

,  

 

   2 3 0 3 -2 
1
2−  

    -1 -1 1/2 -7/4 

   2 2 -1 7/2 
15
4−  

 

Since the remainder is not 0, 1
2

−  is not a zero of f(x). 

If h(x) is divided by x – 1
2

,  
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   2 3 0 3        -2 
1
2  

    1 2 1 2 
   2 4 2 4 0 
 

Since the remainder is 0, 1
2

 is  a zero of f(x). 

 
If h(x) is divided by x + 1,  
 
   2 3 0 3         -2 -1 
    -2 -1 1 -4 
   2 1 -1 4 -6 
 
Since the remainder is not 0, -1 is not a zero of f(x). 
 
If h(x) is divided by x – 1 ,  
 
   2 3 0 3        -2 1 
    2 5 5 8 
   2 5 5 8 6 
 
Since the remainder is not 0, 1 is not a zero of f(x). 
 
If h(x) is divided by x + 2 ,  
 
   2 3 0 3        -2 -2 
    -4 2 -4 2 
   2 -1 2 -1 0 
 
Since the remainder is 0, -2 is a zero of f(x). 
 

   g(x) has 4 zeros and we have already used all possible rational zeros. We 
found only 2 rational zeros. This indicates that there are only 2 real rational 
zeros. The other 2 zeros are not real rational; they may be real irrational or 

imaginary. Thus the real only rational zeros are 1
2

 and -2. 

 
Try this out  

 
Determine the rational zeros of the given polynomial function using synthetic 

division. Leave irrational or imaginary zeros. 
 
Set A 

1. f(x) = x3 – 4x2 – 2x + 5 
2. g(x) = x3 – 6x2 + 11x – 6 
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3. h(x) = 2x3 + 17x2 + 23x – 42 
4. p(x) = 8x4 + 32x3 + x + 4 
5. y =  x4 + 2x3 – 8x – 16 

 
Set B 

1. f(x) = x3 + 6x2 + 11x + 6 
2. g(x) = x3 – 7x + 6 
3. h(x) = x3 + x2 – 12x 
4. p(x) = 9x3 – 7x + 2 
5. y = 5x3 + 4x2 – 31x + 6 

 
Set C 

1. f(x) = x3 – 7x2 + 17x – 15 
2. g(x) = 2x3 + 3x2 – 8x + 3 
3. h(x) = 3x3 + 13x2 + 9x + 20 
4. p(x) = x4 + x3 – 13x2 – 25x – 12 
5. y = 4x5 + 16x4 + 9x3 – 9x2 

 
Lesson 7 

 
Determining the Zeros of Polynomial Functions Using Depressed 

Equations 
 
 

 Consider this division problem  
 

     
3 2x 6x 11x 6

x 1
+ + +

+
 

  
Using synthetic division, 
 

   1 6 11 6 -1 
    -1 -5 -6 
   1 5 6 0 ⇐  3rd line 
 
 The 3rd line indicates that x + 1 is a factor of x3 + 6x2 + 11x + 6 since the 

remainder is 0. Also, the 3rd line gives the quotient to the division problem which 
is indicated by the other entries 1, 5, and 6. These are the numerical coefficients 
of the quotient. That is, 

 

     
3 2x 6x 11x 6

x 1
+ + +

+
 = x2 + 5x + 6 

 
 The quotient x2 + 5x + 6 = 0, when equated to 0 is called a depressed 

equation of x3 + 6x2 + 11x + 6. 
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 Depressed equations are factors of a given polynomial. And can be used 

to find the roots of polynomial equation or zeros of polynomial function. 
 

Examples: 
 
Determine the zeros of the given polynomial function using depressed 

equations. 
 
1. f(x) = x3 + 6x2 + 11x + 6 

 
  The possible rational zeros are ±1, ±2, ±3, and ±6. 
 

If f(x) is divided by x + 1,  
 
  1 6 11 6 -1 
   -1 -5 -6 
  1 5 6 0 
 
Since the remainder is 0, -1 is a zero of f(x). 
 
The depressed equation is x2 + 5x + 6 = 0 
 
To find the other zeros of f(x), solve the depressed equation.  
 
   x2 + 5x + 6 = 0 
   (x + 3)(x + 2) = 0   By factoring 
   x + 3 = 0 or x + 2 = 0 
   x = -3 and x = -2 
 
Thus, the zeros of f(x) are -1, -3 and -2. 
 

2. g(x) = 2x4 + 3x3 + 3x – 2  
 

The possible rational zeros are 1
2

± , ±1 and ±2.     

If h(x) is divided by x + 2,  
 
  2 3 0 3        -2 -2 
   -4 2 -4 2 
  2 -1 2 -1 0 
 
Since the remainder is 0, -2 is a zero of g(x).  
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 The first depressed equation is 2x3 – x2 + 2x – 1 = 0. This depressed 
equation can be used to find a second depressed equation without affecting the 
results. 
 

If the depressed equation is divided by x – 1
2

,  

 
  2 -1 2 -1  1

2
 

   1 0 1 
  2 0 2 0 
 
Since the remainder is 0, 1

2
 is another zero of g(x). 

The second depressed equation is 2x2 + 2 = 0 
 
To find the other zeros of g(x), solve the second depressed equation. 
 
   2x2 + 2 = 0 
     x2 + 1 = 0 
           x2 = -1 
           x = 1± −   
           x = i or –i 
 
Thus the zeros of g(x) are 1

2
, -2, -i and i.  

 
Try this out  

 
Determine the zeros of the given polynomial function using depressed 

equations. 
  

Set A 
1. f(x) = x3 – 4x2 – 2x + 5 
2. g(x) = x3 – 6x2 + 11x – 6 
3. h(x) = 2x3 + 17x2 + 23x – 42 
4. p(x) = 8x4 + 32x3 + x + 4 
5. y =  x4 + 2x3 – 8x – 16 

 
Set B 

1. f(x) = x3 + 6x2 + 11x + 6 
2. g(x) = x3 – 7x + 6 
3. h(x) = x3 + x2 – 12x 
4. p(x) = 9x3 – 7x + 2 
5. y = 5x3 + 4x2 – 31x + 6 

 
Set C 

1. f(x) = x3 – 7x2 + 17x – 15 

Recall from your lesson in 
quadratic equation,  1−  is an 
imaginary number = i. 
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2. g(x) = 2x3 + 3x2 – 8x + 3 
3. h(x) = 3x3 + 13x2 + 9x + 20 
4. p(x) = x4 + x3 – 13x2 – 25x – 12   
5. y = 4x5 + 16x4 + 9x3 – 9x2 

 
 

Lesson 8 
 

Quadratic Surd Roots Theorem 
 
 

 One interesting fact about the zeros of polynomial functions or roots of 
polynomial equations of degree n ≥ 2 is that there are some zeros or roots that 
occur in pairs. For instance, x2 – 3 = 0 has roots 3  and - 3 , f(x) = x2 – 6x + 2 
has zeros 3 + 7  and 3 – 7 . The Quadratic Surd Roots Theorem generalizes 
this fact. 

 
 “If the quadratic surd a + b  is a root of a polynomial equation, where a 

and b are rational numbers, and b  is an irrational number, then a – b is also a 
root of the polynomial equation.” 

 
Examples: 

 
 If the given quadratic surd is a zero of a polynomial function, give the other 

quadratic surd which is also a zero of the polynomial function. 
 

1. 2 + 2  
 

Since 2 + 2  is a zero a polynomial function, 2 – 2 is also a zero of 
the polynomial function. 
 
2. 4 – 3 5  
 

Since 4 – 3 5  is a zero a polynomial function, 4 + 3 5  is also a zero 
of the polynomial function. 
 
3. 3  – 7   
 

Since 3  – 7 is a zero a polynomial function, 3−  – 7 is also a zero of 
the polynomial function. 
 
4. 9 11− + 1  
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Since 9 11− + 1 is a zero a polynomial function, 9 11+ 1 is also a zero 
of the polynomial function. 
 

 
Try this out  

 
If the given quadratic surd is a zero of a polynomial function, give the other 

quadratic surd which is also a zero of the polynomial function. 
 
Set A 

1. 1 + 9 5  
2. -4 – 2 2  
3. 3  – 7 
4. 3 11 + 1 
5. 2 7− – 6  

 
Set B 

1. -5 + 7 5  
2. 14 – 9 2  
3. 2 3  – 9 
4. -2 13 + 8 
5. 7 5 – 6 
 

Set C 
1. 8 – 2 5  
2. -10 + 3 2  
3. -3 3  – 3 
4. 23 13 – 28 
5. -17 5 + 16 

 
 

Lesson 9 
 

Complex Conjugate Roots Theorem 
 
 

 Complex conjugate roots behave in the same manner as quadratic surd 
roots. That is, they also come in pairs. For instance, x2 + 3 = 0 has roots i 3  

and -i 3 , f(x) = 3x2 – 4x + 5 has zeros 2
3

+ 1 i 11
3

 and 2
3

 – 1 i 11
3

. The pairs 
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i 3  and -i 3  and 2
3

+ 1 i 11
3

 and 2
3

 – 1 i 11
3

 are examples of complex 

conjugates. The Complex Conjugate Roots Theorem generalizes the fact: 
 
 “If the complex number a + bi is a root of a polynomial equation with real 
coefficients, then the complex conjugate a – bi is also a root of the polynomial 
equation.” 
 

Examples: 
 
If the given complex conjugate is a zero of a polynomial function, give the 

other complex conjugate which is also a zero of the polynomial function. 
 
1. 2 + 3i 

 
Since 2 + 3i is a zero a polynomial function, 2 –3i is also a zero of the 

polynomial function. 
 

2. 4 – 3i 
 

Since 4 – 3i is a zero a polynomial function, 4 + 3i is also a zero of the 
polynomial function. 
 

3. -i – 7   
 

Since -i – 7 is a zero a polynomial function, -i – 7 is also a zero of the 
polynomial function. 
 

4. 9i 11− + 1  
 

 Since 9i 11− + 1 is a zero a polynomial function, 9i 11 + 1 is also a 
zero of the polynomial function. 
 

 If the given quadratic surd is a zero of a polynomial function, give the other 
quadratic surd which is also a zero of the polynomial function. 

 
Try this out  

 
Set A 

1. 1 + 9i 
2. -4 – 2i 
3. i 3  – 7 
4. 3i 11+ 1 
5. 2i 7− – 6  
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Set B 
1. -5 + 7i 
2. 14 – 9i 
3. 2i 3  – 2 
4. -2i 13 + 5 
5. -7i 5 – 9 

 
Set C 

1. 9 – 2i 
2. -12 + 3i 
3. -4i 3  – 8 
4. 2i 13 – 2 
5. -i 5 + 6 

 
 

Lesson 10 
 

Shortcuts in Determining the Zeros of Polynomial Functions 
 
 
 The different ways of determining the zeros of polynomial functions and 

the different theorems concerning roots of polynomial equations can be 
combined. This is illustrated in the next examples. 

 
Examples: 

 
Find all the zeros of each polynomial function. 
 
1. p(x) = x3 – 2x2 – x + 2 

 
Possible zeros: ±1 and ±2 
 
  1 -2 -1 2 -1 
   -1 3        -2 
  1 -3 2 0 
 

Since the remainder is 0, -1 is a zero of p(x) and x2 – 3x + 2 = 0 is a 
depressed equation. Solving the depressed equation by factoring, 

 
   x2 – 3x + 2 = 0 
   (x – 2)(x – 1) = 0 
   x = 2 or x = 1 
 
 Hence, the zeros of p(x) are -1, 2 and 1. 
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2. f(x) = x4 – 3x3 – 4x2 + 12x 

 
  f(x) = x4 – 3x3 – 4x2 + 12x 
         =x(x3 – 3x2 – 4x + 12) 
 

The factored form suggests that one of the zeros is 0. The other zeros 
can be found from x3 – 3x2 – 4x + 12 = 12. The possible roots of this 
equation are ±1, ±2, ±3, ±4, ±6 and ±12. 

 
  1 -3 -4 12 2 
   2 -2       -12 
  1 -1 -6 0 
 

Since the remainder is 0, 2 is a zero of f(x) and x2 – x – 6 = 0 is a 
depressed equation. Solving the depressed equation by factoring, 

 
   x2 – x – 6 = 0 
   (x – 3)(x + 2) = 0 
   x = 3 or x = -2 
 
 Hence, the zeros of f(x) are 0, 2, 3 and -2. 
 

3. g(x) = 6x4 + x3 – 13x2 – 2x + 2 

 Possible zeros: ±1, ±2, 1
2

± , 1
3

± , 1
6

±  and 2
3

±  

 

  6 1 -13 -2 2 
1
2−  

   -3 1 6 -2 
  6 -2 -12 4 0 
 

Since the remainder is 0, 1
2− is a zero of g(x) and 6x3 – 2x2 –12x + 4 = 

0 is the first depressed equation. Using this depressed equation to find 
another zero, 

 
  6 -2 -12 4  1

3  
   2 0 -4 
  6 0 -12 0 
 

Since the remainder is 0, 1
3  is a zero of g(x) and 6x2 –12 = 0 is the 

second depressed equation. Solving 6x2 –12 = 0, 
 
   6x2 –12 = 0 
          6x2 =12 
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            x2 = 2 
                                x = 2  or x = - 2  
 

 Hence, the zeros of g(x) are 1
2− , 1

3 , 2  and - 2 . 
 

Try this out  
 

Find all the zeros of each polynomial function. 
 
Set A 

1. p(x) = x3 – 13x + 12 
2. f(x) = x3 + 9x2 + 23x + 15  
3. g(x) = 3x3 + 9x2 – 30x 
4. h(x) = x3 – 8 
5. y = 2x3 – 13x2 – 26x + 16 

 
Set B 

1. p(x) = x5 + x4 – 3x3 – x2 + 2x 
2. f(x) = 3x3 – 2x2 – 3x +  2 
3. g(x) = 4x3 – 13x2 + 11x – 2 
4. h(x) = 6x3 + 4x2 – 14x + 4 
5. y = 2x3  + 3x2 – 8x + 3 

 
Set C 

1. p(x) = 6x4 + x3 – 13x2 – 2x + 2 
2. f(x) =  x5 + 3x4 – 4x3 – 12x2 
3. g(x) = 6x4 – 19x3 – 22x2 + 7x + 4 
4. h(x) = 2x4 + 22x3 + 46x2 
5. y = x4 – 2x3 – 15x2 – 4x + 20 

 
 
 

     Let’s summarize 
 

1. Every polynomial equation of a degree n ≥ 1 has exactly n roots. 
 
2. Zeros of polynomial functions in x are determined by equating each factor 

of the polynomial to 0 and then solving for x. 

3. If a rational number L
F

 in lowest terms is a root of the polynomial equation 

anxn + an - 1xn – 1 + an - 2xn – 2 + … + a2x2 + a1x + a0 = 0, where an, an – 1,  an – 

2, …, a2, a1, a0 are integers, then L is a factor of a0 and F is a factor of an. 
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4. Any rational root of the polynomial equation xn + an - 1xn – 1 + an - 2xn – 2 + … 
+ a2x2 + a1x + a0 = 0, where an – 1, an – 2, … , a2, a1, a0 are integers, is an 
integer and is a factor of a0. 

 
5. The Factor Theorem states that “If p(c) = 0, then x – c is a factor of p(x).” 

This implies that c is a zero of p(x). 
 

6. The zeros of a polynomial function can be determined easily if the 
polynomial is in factored form.  

 
7. Depressed equations are factors of a given polynomial, and can be used 

to find the roots of polynomial equation or zeros of polynomial function. 
 

8. If the quadratic surd a + b  is a root of a polynomial equation, where a 
and b are rational numbers, and b  is an irrational number, then a – b is 
also a root of the polynomial equation 

 
9. If the complex number a + bi is a root of a polynomial equation with real 

coefficients, then the complex conjugate a – bi is also a root of the 
polynomial equation. 

 
 

 
   What have you learned 

 
1. How many zeros do the polynomial function f(x) = x6 – 3x5 – x4 + 2x2 + x – 

3 have? 
2. How many roots do the polynomial equation 2x5 +  x4 + 8x2 – 2x – 1 = 0 

have? 
3. Determine the zeros of the polynomial function F(x) = x(x – 2)2(x + 3)(3x – 

2). 
4. What are the possible rational zeros of p(x) = x4 – 4x3 + 2x2 – 9? 
5. What are the possible rational roots 5x5 – 2x4 + x3 – x2 + 8x – 3 = 0? 
6. Find all the zeros of h(x) = x3 – 4x2 – 7x + 10. 
7. Solve the polynomial equation x4 – 2x3 – 15x2 – 4x + 20 = 0 using 

synthetic division. 
8. Find all zeros of g(x) = x3 – 4x2 + 5x – 2 using depressed equations. 
9. One of the roots of x3 – 4x2 + 6x – 4 = 0 is 1 + i. What are the other roots? 

10. One of the zeros of p(x) = 4x4 + 8x3 – 8x2 – 4x is 3 5
2

− + . Find the other 

zeros. 
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    Answer Key 
 

How much do you know  
1. 5 
2. 4 

3. 0, 3 multiplicity 2, -1 and 3
2

 

4. ±1, ±3, ±5, ±15 

5. ±1, ± 1
3

, ±5, ± 5
3

 

6. 2 and 4 (multiplicity 2) 
7. -2, 0, 1, and 7 
8. -1, 1, and 2 
9. 2 2− and 12 

10. i 13 , 1
2

− and 1 

 
Try this out 
 
Lesson 1 
Set A 

1. 5 
2. 7 
3. 10 
4. 6 
5. 7 

Set B 
1. 3 
2. 7 
3. 8 
4. 7 
5. 5 

Set C 
1. 7 
2. 6 
3. 7 
4. 9 
5. 10 

 
Lesson 2 
Set A 

1. -4, 0, 2 
2. -7, 0, 1 

3. 3
2

− , 
4
5 , 3 
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4. 0, 1, 4
3

 

5. -3, 1
3

− , 0 

 
Set B 

1. -2 multiplicity 3, 8 multiplicity 5 

2. 1
5

−  multiplicity 6, 7
2

 multiplicity 4 

3. 0, 
3
2  multiplicity 2, 5 

4. -4 multiplicity 3, 0 multiplicity 2, 3
2

, 7
3

 

5. 2
5

−  multiplicity 4, 0 multiplicity 3, 4, 1 multiplicity 2 

 
Set C 

1. -3, 1
3

− , 0, 9
2

 

2. -1, 1
2

 multiplicity 2, 1 

3. -5, -2, 0, 4
3

 

4. 5
2

− , 0, 1, 
3
7− , 

2
1

−  

5. 5
3

− , 3
2

− , 1
4

− , 1 

 
Lesson 3 
Set A 

1. ±1, ±5 
2. ±1, ±2, ±3, ±6 
3. ±1, ±3 
4. ±1, ±2, ±4, ±8, ±16 

5. ±1, ± 1
2

, ±2, ±3, , ± 3
2

, ±6, ±7, ± 7
2

, ±14, ±21, ± 21
2

, ±42 

 
Set B 

1. ±1 
2. ±1, ±2, ±4, ±8, ±16, ±32 

3. ± 1
2

, ±1, ±3, ± 3
2

 

4. ±1, ± 1
3

, ±2, ± 2
3

, ±4, ± 4
3

, ±5, ± 5
3

,  ±10, ±10
3

, ±20, ± 20
3
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5. ±1, ± 1
2

, ± 1
4

, ±2, ±4, ±8 

 
Set C 

1. ±1, ±3, ±5, ±15 

2. ±1, ± 1
2

, ±2 

3. ±1, ± 1
3

, ±2, ± 2
3

 

4. ±1, ± 1
2

, ± 1
3

, ±2, ± 2
3

, ±4, ± 4
3

, ±8, ± 8
3

 

5. ±1, ± 1
2

, ± 1
3

, ± 1
6

, ±2, ± 2
3

, ± 1
3

 

 
Lesson 4 
Set A 

1. -3, -1, 2 
2. -3, -2, 1 
3. -3, -2, 2 
4. -2, -1, 4 
5. -1, -1, 1 

 
Set B  

1. -1, 2, 3 
2. -2, 3, 4 
3. -2, 2, 3 
4. -1, 3, 4 
5. -1, 1, 5 

 
Set C  

1. -1, 1, 1 

2. -2,  
2
3  2,  

3. –3, 2
3

, 3 

4. -1, - 1
2

, 1
2

, 1 

5. -3, -2, - 1
2

,1  

 
Lesson 5 
Set A 

1. -2, 2, -3 
2. -2, -1, -3 
3. -2, -1, 4 
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4. -3, -2, 1 
5. -1, -1, 1 

 
Set B 

1. -1, 3, 4 
2. -2, 2, 3 
3. -2, 3, 4 
4. -2, 2, 3 
5. -1, 1, 1 

 
Set C 

1. -1, 2, 3 

2. 2
3

, i, -i 

3. 1
2

, 2 , 2−  

4. -3, -2, - 1
2

, 1 

5. -1, - 1
2

, 1
2

, 1  

 
Lesson 6 
Set A 

1. 1(the only rational zero), 2 are not rational zeros  
2. 1, 2, 3 

3. -6, 
4

14
− , 1 

4. -4, 1
2

 (the 2 rational zeros), 2 are not rational zeros  

5. -2, 2 (the 2 rational zeros), 2 are not rational zeros  
 
Set B 

1. -3, -2, -1 
2. -3, 1, 2 
3. -4, 0, 3 

4. -1, 1
3

, 2
3

 

5. -3, 1
5

, 2 

 
Set C 

1. 3 (the only rational zero),  2 are not rational zeros 

2. -3, 1
2

, 1 

3. -4 (the only rational zero), 2 are not rational zeros 
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4. -3, -1, -1, 4 

5. -3,  3
2

− , 0, 0, 1
2

 

 
Lesson 7 
Set A 

1. 1, 
2

293+ , 
2

293−  

2. 1, 2, 3 

3. -6, 
4

14
− , 1 

4. -4, 
2
1

− , 
4

51+ , 
4

51−  

5. -2, 2, 
2

71 i+− , 
2

71 i−−  

 
Set B 

1. -3, -2, -1 
2. -3, 1, 2 
3. -4, 0, 3 

4. -1, 1
3

, 2
3

 

5. -3, 1
5

, 2 

 
Set C 

1. 3,  2 i+ , 2 i−  

2. -3, 1
2

, 1 

3. -4, 
6

591 i+− , 
6

591 i−−  

4. -3, -1, -1, 4 

5. -3,  3
2

− , 0, 0, 1
2

 

 
Lesson 8 
Set A 

1. 1 9 5−  
2. 4 2 2− +  
3. 3 7− −  
4. 3 11 1− +  
5. 2 7 6−  
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Set B 

1. 5 7 5− −  
2. 14 9 2+  
3. 2 3 9− −  
4. 2 13 8+  
5. 7 5 6− −  

 
Set C 

1. 8 2 5+  
2. 2310 −−  
3. 3 3 3−  
4. 23 13 28− −  
5. 17 5 16+  
 

Lesson 9 
Set A 

1. 1 9i−  
2. 4 2i− +  
3. i 3 7− −  
4. 3i 11 1− +  
5. 2i 7 6−  

 
Set B 

1. 5 7i− −  
2. 14 9i+  
3. 2i 3 2− −  
4. 2i 13 8+  
5. 7i 5 9−  

 
Set C 

1. 9 2i+  
2. 12 3i− −  
3. 4i 3 8−  
4. 2i 13 2− −  
5. i 5 6+  
 

Lesson 10 
Set A 

1. -4, 1, 3 
2. -5, -3, -1 
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3. -5, 0, 2 
4. 2, 1 i 3− + , 1 i 3− −  

5. -2, 1
2

, 8 

 
Set B 

1. -2, -1, 0, 1, 1 

2. -1, 2
3

, 1 

3. 1
4

, 1, 2 

4. -2, 1
3

, 1 

5. -3, 1
2

, 1 

 
Set C 

1. 1
2

− , 1
3

, 2 2−  

2. -3, -2, 0, 0, 2 

3. -1, 1
3

− , 1
2

, 4 

4. 0, 0, 11 29
2

− + , 11 29
2

− −  

5. -2, -2, 1, 5 
 
What have you learned  
 

1. 6 
2. 5 

3. -3, 0, 2
3

, 2, 2 

4. ±1, ±3, ±9 

5. ±1, ± 1
5

,± 3
5

 

6. -2, 1, 5 
7. -2, -2. 1, 5 
8. 1, 1, 2 
9. 1 – i, 2 

10. 0, 1, 3 5
2

− −  


