CHED MEMORANDUM ORDER (CMO)
 NO. 53;
 Series of 2006

SUBJ ECT : POUCIES AND STANDARDS FOR INFORMATION TECHNOLOGY EDUCATION (ITE) PROGRAMS
x---
In accordance with pertinent provisions of Republic Act (RA) No. 7722, otherwise known as the "Higher Education Act of 1994," and pursuant to Commission En Banc (CEB) Resolution No. 798-2006 to rationalize Information Technology Education (ITE) in the country and keep pace with the demands of global competitiveness, the following Policies and Standards (PS) for TE are hereby adopted and promulgated by the Commission, thus:

ARICLE I
 INTRODUCTION

Section I. Rationale and Background

The field of Information Technology (IT) is ever dynamic; its advancement and development had been rapid and its evolvement is a continuous process. To face the challenges of advancement, the Commission recognizes the need to be responsive according to the current needs of the country. Hence, it is essential and important that the country's IT capability should be continually developed and strengthened to be at parglobally.

It is the objective of the Commission to develop and promote the Policies and Standards (PS) for Information Technology Education to provide a minimum standard for Higher Education Institutions (HEls) offering or intending to offer quality IE programs. The PS is developed with consultations from all stakeholders, from the academe to industry.

The PS contains provisions that cultivate the culture of excellence in offering the ITE programs. This is in line with the vision of the Commission to have HEls produce competent graduates that shall cater to the needs of the IT industry. The PS is also designed for all HEls to exercise their innovativeness and creativity in the development of its curric ulum for the offering of ITE programs.

ARICLE II AUIHORTY TO OPERATE

Section 2. Authority to Operate. All Private Higher Education Institutions (PHEls) intending to offer degree programs in Computer Science, Information Technology and Information Systems must first secure proper authority from the Commission in accordance with existing rules and regulations. State universities and colleges (SUCs), and local colleges and universities should likewise strictly adhere to the provisions in this polic ies and standards.

ARIICLE III
 PROGRAM SPECIRCATIONS

Section 3. Degree Programs. - The degree programs corresponding respectively to these specific areas are the following:
3.1 Bachelor of Science in Computer Science (BSCS) - the study of concepts and theories, algorithmic foundations, implementation and application of information and computing solutions.
3.2 Bachelor of Science in Information Technology (BSIT) - the study of utilization of computers and computer software to plan, install, customize, operate, manage, administer and mainta in information technology infrastructure.
3.3 Bachelor of Science in Information Systems (BSIS) - the study of design and implementation of solutions that integrate information technology with business processes. The BSIS shall replace the Bachelor of Science in Information Management (BSIM) program.

Section 4. Program description.

The objectives of the three (3) programs in IE are as follows:
4.1.1 The Bachelor of Science in Computer Science (BSCS) program prepares students to be IT professionals and researchers, and to be proficient in designing and developing computing solutions.
4.1.2 The Bachelor of Science in Information Technology (BSIT) program prepares students to be ITprofessionals, be well versed on application installation, operation, development, ma intenance and administration, and fa miliar with hardware installation, operation, and maintenance.
4.1.3 The Bachelor of Science in Information Systems (BSIS) program prepares students to be IT professionals and be expert on design and implementation of IS for business processes.
4.2 Specific professions/careers/occupations or trades that the graduates of these programs may pursue. - After satisfactorily completing all the requirements leading to a BSCS, BSIT, or BSIS degree, students may qualify for but not limited to the following entry level positions:

4.2.1 Bachelor of Science in Computer Science (BSCS)

- Applications Developer
- Computer Science Instructor
- Database Programmer/ Designer
- Information Security Engineer
- Quality Assurance Engineer
- Researcher
- Systems Developer
- Systems Analyst

4.2.2 Bachelor of Science in Information Tec hnology (BSTT)

- Applications developer
- Database Administrator
- Entrepreneur in IT Industry
- Information Security Administrator
- Information Technology Instructor
- Network Administrator
- Network Engineer
- Systems Analyst
- Technical Support Spec ia list
- Test Engineer
- Web Administrator/ Web Master
- Web Developer

4.2.3 Bachelor of Science in Information Systems (BSIS)

- Business Process Analyst
- Data Quality Specialist
- Entrepreneur in Tindustry
- IS Instructor
- SystemsAuditor
- Quality Assurance Analyst
- Systems Implementation Offic er
- Technical Support Specia list

Section 5. Allied Programs. - These are programs that may be considered as equivalent to ITE programs for the purpose of determining qualifications of faculty members and for students cross enrolling to other department.

For the BSCS Program:

- BS Mathematics
- BSComputer Engineering
- BS in Electronics and Communic ations Eng ineering
- BSApplied Mathematics

For the BSTPPogram:

- BSComputer Engineering
- BS Electronics and Communic a tions Engineering
- BSStatistics
- BS in Information Management

For the BSIS Program:

- BS Information Management
- BSStatistics
- BS Industrial Engineering

ARIICLE IV COMPEIENCY STANDARDS

Section 6. Competency Standards - Competency refers to specific skills, knowledge and attitude that may be demonstrated through performance, while standards are common set of expectations. Graduates of either BSCS, BST, or BSIS programs, are expected to have acquired but not limited to the following competencies:

6.1 Personal Skills

- Personal-discipline skills
- Critic al-thinking skills
- Inter and intra person motivation skills
- Problem solving skills
- Planning and organizing skills
- Ethical thinking
- Entrepreneurial thinking
- Innovative
- Perseverance in pursuing goals and continuous improvement
6.2 Interpersonal Skills
- Team work a nd collaborative skills
- Oral and written communic ation skills
- Conflict resolution skills
6.3 Technical Understanding
6.3.1 Bachelor of Science in Computer Science (BSCS)
- Application of fundamental computer concepts as problem solving skills
- Design and implementation of computer-based solutions
- Recognition and application of tec hnic al standa rds and interoperability
- Research in Computer Science related areas
- Integration of knowledge lea med in different a reas of Computer Science
6.3.2 Bachelor of Science in Information Technology (BSIT)
- Systems a nalysis a nd design
- Operation of database, networks and multimedia systems
- Software integration, testing and documentation
- Systems ma nagement and administration
- Princ iples of accounting
6.3.3 Bachelor of Science in Information Systems (BSIS)
- Information abstraction, representation and organization
- Computing architec tures a nd delivery systems
- Concepts of information and system distribution
- Information management and system development
- Computing tools in knowledge application

ARIICLE V

 CURRCULUMSection 7. Curiculum Description. - TE shall be built upon a core of courses and a series of professional courses leading to one or more of the three programs. The New General Education Curic ulum as mandated by the Commission shall form part of the requirements for ITE. The required natural science courses in the GE curric ulum should include a laboratory component.

Section 8. Curic ulum Outine. - The curiculum outline is divided into five (5) components namely: General Education, Basic ITE Core Courses, ITE Professional Courses, ITE electives and free electives with a minimum requirement of 140 units. The outline is asfollows:

Pla nning), Politic s \& G ovemance (with Philippine Constitution)
b) BASIC ITE CORE COURSES 18
c) ITE PROFESSIONALCOURSES 33
d) ITE ELECTIVES 12
e) PREE ELECTIVES 9
PE 8NSTP6
TOTAL UNITS 140

Section 9. Sample program of study. - Below are sample curicula for the BSCS, BSIT a nd BSIS.

Sample Cumic ulum for the Bachelor of Science in Computer Science (BSCS) Program

RRSTYEAR

First Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL
HRS/WK							

Sec ond Semester

DESCRIPIVE TILE	COURSE CODE	TOTAL UNITS	IEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Computer Programming 2	CS103	3	2	1	None	CS102	5
Data Structures	CS201	3	3	0	None	CS102	3
Trigonometry	GE102	3	3	0	None	GE101	3
Eng lish 2 (Communic ations for IT)	GE202	3	3	0	None	GE201	3
Filip ino 1	GE206	3	3	0	None	GE201	3
Natural Sc ience 2	GE112	3	3	0	None	GE111	3
PE 2		2	2				2
NSTP 2		3	3				3
			$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{1}$		
TOTAL					$\mathbf{2 5}$		

SECOND YEAR

First Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Object Oriented Programming	CS211	3	2	1	None	CS103	5
Design and Analysis of Algorithm	CS202	3	3	0	None	CS201	3
Discrete Structures	CS104	3	3	0	None	G E101	3
Calculus	CS210	3	3	0	None	G E102	3
English 3	G E203	3	3	0	None	GE202	3
Filipino 2	G E207	3	3	0	None	G E206	3
PE 3		2	2				2
TOTAL		20	19	1			22

Sec ond Semester

DESCRIPIIVE TIIE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Database Systems	CS212	3	2	1	None	CS103	5
Programming Languages	CS203	3	2	1	None	CS103	5
Automata and Language Theory	CS204	3	3	0	None	CS103	3
Digital Design	CS206	3	3	0	None	GE102	3
Probability and Statistics	GE103	3	3	0	None	G E102	3
Huma nities 1	GE401	3	3	0	None	None	3
PE 4		2	2				2
TOTAL		20	18	2			24

THIRD YEAR

First Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNIS	LEC UNIS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Web Programming	CS213	3	2	1	None	CS212	5
Modelling and Simulation	CS205	3	3	0	None	GE101	3
Computer Organization and							
Assembly Language	CS105	3	2	1	None	CS206	5
CSElective 1	CS301	3	2	1	None	3rd Yr	5
Social Science 2	GE302	3	3	0	None	None	3
Humanities 2	GE402	3	3	0	None	None	3
TOTAL		$\mathbf{1 8}$	$\mathbf{1 5}$	$\mathbf{3}$			$\mathbf{2 4}$

Second Semester

DESCRIPIVE TITE	$\begin{aligned} & \text { COURSE } \\ & \text { CODE } \end{aligned}$	TOTAL UNITS	$\begin{aligned} & \hline \text { LEC } \\ & \text { UNITS } \end{aligned}$	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Software Eng ineering	CS214	3	2	1	None	CS211	5
Operating Systems	CS207	3	2	1	None	CS105	5
CSElective 2	CS302	3	2	1	None	3rd Yr	5
Free Elective 1	CS401	3	2	1	None	None	5
Social Science 3	GE303	3	3	0	None	None	3
Huma nities 3	GE403	3	3	0	None	None	3
TOTAL		18	14	4			26

Summer

DESCRIPIVE TITE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Intemship/OJ T/Practic um	CS500	3	0	3	None	None	
TOTAL		$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$			$\mathbf{1 6 2}$

FOURIH YEAR

First Semester

DESCRIPIVE TIIE	COURSE CODE	TOTAL UNIS	LEC UNIS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Thesis 1	CS501	3	3	0	None	CS214	3
Network Principles and							
Programming	CS208	3	2	1	None	CS207	5
Professional Ethics	CS106	3	3	0	None	CS101	3
CS Elective 3	CS302	3	2	1	None	None	5
Social Science 4	GE304	3	3	0	None	None	3
Social Science 5	GE405	3	3	0	None	None	3
TOTAL		$\mathbf{1 8}$	$\mathbf{1 6}$	$\mathbf{2}$			$\mathbf{2 2}$

Sec ond Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNIT	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL
HRS/WK							

BSCS TOTALS

$152 / 155$	136	19

Sample Curic ulum for the Bachelor of Science in Information Technology (BSIT) Program

RRSTYEAR

First Semester

DESCRIPIVE TILE	COURSE CODE	TOTAL UNIT	LEC UNIS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL
HRS/WK							

Sec ond Semester

DESCRIPIVE TITLE	COURSE CODE	TOTAL UNIS	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL
HRS/WK							

SECOND YEAR

First Semester

DESCRIPIIVE TITLE	COURSE CODE	TOTAL UNIS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Computer Organization	17105	3	2	1	None	17103	5
Object Oriented Programming	17211	3	2	1	None	IT103	5
Discrete Structures	17104	3	3	0	None	GE101	3
Accounting Principles	IT201	3	3	0	None	GE102	3
English 3	G E203	3	3	0	None	GE202	3
Filipino 2	GE207	3	3	0	None	GE206	3
PE 2		2	2				2
NSTP 2		3	3				3
IOTAL		23	21	2			27

Sec ond Semester

DESCRIPIIVE TITE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Database Management System 1	17212	3	2	1	None	17211	5
Operating System Applic ations	IT202	3	3	0	None	17105	3
Network Ma na gement	IT203	3	2	1	None	T105	5
Probability and Sta tistics	GE103	3	3	0	None	G E101	3
Social Science 2	GE302	3	3	0	None	None	3
Huma nities 2	GE402	3	3	0	None	None	3
PE 3		2	2				2
TOTAL		20	18	2			24

THIRD YEAR

First Semester

DESCRIPIIVE TITLE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Web Development	17214	3	2	1	None	1 T 12	5
Systems Analysis a nd Design	IT204	3	2	1	None	GE102	5
Database Management Systems 2	17213	3	2	1	None	1 T 212	5
TElective 1	IT301	3	2	1	None	3 rd Yr	5
Social Science 3	G E303	3	3	0	None	None	3
Huma nities 3	G E403	3	3	0	None	None	3
PE 4		2	2				2
TOTAL		20	16	4			28

Second Semester

DESCRIPIVE TIIE	COURSE CODE	TOTAL UNIS	LEC UNIS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Software Engineering	T205	3	2	1	None	TT204	5
Multimedia Systems	T215	3	2	1	None	T214	5
Professional Ethics	TT06	3	3	0	None	TT101	3
TElective 2	T302	3	2	1	None	None	5
Free Elective 1	T401	3	3	0	None	None	3
Social Science 4	GE304	3	3	0	None	None	3
TOTAL							

FOURIH YEAR

First Semester

DESCRIPIVE TIIE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNIS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Intemship/OJ T/Practic um	$1 T 500$	9	0	9	Senior Standing	T11	27
TOTAL		$\mathbf{9}$	$\mathbf{0}$	$\mathbf{9}$			$\mathbf{2 7}$

Sec ond Semester

DESCRIPIVE TITE	$\begin{gathered} \text { COURSE } \\ \text { CODE } \end{gathered}$	TOTAL UNITS	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Capstone Project							
TElective 3		3	2	1	None	Non	
TElective 3	11303					None	5
TElective 4	IT304	3	2	1	None	None	5
Free Elective 2	17402	3	3	0	None	None	3
Free Elective 3	17403	3	3	0	None	None	3
Social Science 5	GE305	3	3	0	None	None	3
TOTAL		18	16	2			22

BSITTOTALS

149	124	25

Sample Curic ulum for the Bachelor of Science in Information Systems (BSIS) Program

RRSTYEAR

First Semester

DESCRIPIVE TITE	$\begin{aligned} & \text { COURSE } \\ & \text { CODE } \end{aligned}$	TOTAL UNITS	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Fundamentals of Information Systems/ Information Management	IS101	3	3	0	None	None	3
Personal Productivity using IS	IS102	3	2	1	None	None	5
Algebra	GE101	3	3	0	None	None	3
English 1	GE201	3	3	0	None	None	3
Natural Science 1	GE211	3	3	0	None	None	3
Huma nities 1	GE401	3	3	0	None	None	3
PE 1		2	2	0			2
NSTP 1		3	3	0			3
TOTAL		23	22	1			25

Second Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Human Computer Interaction	IS211	3	3	0	None	None	3
Funda menta ls of Programming,							
Data, File and Object Structures	IS103	3	2	1	None	None	5
Introduction to the IM Profession and							
Ethics	IS106	3	3	0	None	None	3
Fund menta ls of Business a nd							
Management	IS201	3	3	0	None	None	3
Trigonometry	GE102	3	3	0	None	GE101	3
English 2	G E202	3	3	0	None	G E201	3
Natural Science 2	GE212	3	3	0	None	G E211	3
PE 2		2	2	0			2
NSTP 2		3	3	0			3
TOTAL		26	25	1			28

SECOND YEAR

First Semester

DESCRIPIIVE TITE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Systems A nalysis a nd Design	IS213	3	3	0	None	IS211	3
Databases	IS212	3	2	1	None	IS103	5
System Infrastructure and Integration	IS214	3	3	0	None	IS103	3
Business Processes	IS202	3	3	0	None	IS201	3
Disc rete Structure	IS104	3	3	0	None	G E101	3
Filipino 1	GE206	3	3	0	None	G E201	3
English 3	G E203	3	3	0	None	G E202	3
PE 3		2	2	0			2
TOTAL		23	22	1			25

Sec ond Semester

DESCRIPIVE TIIE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNISS	Co-REQ	Pre-REQ.	TOTAL HRS/ WK
Applic ations Development	IS215	3	2	1	None	IS212-213	5
Networks and Intemet Technology	IS105	3	2	1	None	IS214	5
Accounting and Financials	IS203	3	3	0	None	IS202	3
Probability and Statistics	GE103	3	3	0	None	GE101	3
Filipino 2	GE207	3	3	0	None	GE206	3
Social Science 1	GE301	3	3	0	None	None	3
Social Science 2	GE302	3	3	0	None	None	3
PE 4		2	2	0			2
TOTAL							

THIRD YEAR

First Semester

DESCRIPIIVE TITE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Project Management and Quality Systems	IS217	3	3	0	None	IS215	3
Deployment Maintenance and					None		3
Services	IS216	3	3	0	None	IS215	3
Evaluation of Business Performance	IS204	3	3	0	None	IS203	3
IS Elective 1	IS301	3	3	0	None	3rd Yr	3
Free Elective 1	IS401	3	3	0	None	None	3
Social Science 3	IS303	3	3	0	None	None	3
Huma nities 2	IS402	3	3	0	None	None	3
TOTAL		21	21	0			21

Sec ond Semester

DESCRIPIVE TITE	COURSE CODE	TOTAL UNITS	LEC UNITS	LAB UNITS	CO-REQ	Pre-REQ.	TOTAL
HRS/WK							
Infomation Systems Planning	IS218	3	3	0	None	IS216	3
Ma na gement of Technology	IS205	3	3	0	IS218	None	3
IS Elective 2	IS302	3	3	0	None	None	3
IS Elective 3	IS303	3	3	0	None	None	3
Free Elective 2	IS402	3	3	0	None	None	3
Social Science 4	GE304	3	3	0	None	None	3
TOTAL							
		$\mathbf{1 8}$	$\mathbf{1 8}$	$\mathbf{0}$			$\mathbf{1 8}$

FOURIH YEAR

First Semester

DESCRIPIIVE TITE	COURSE CODE	TOTAL UNIS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	LAB UNITS	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Intemship/OJ T/Practic um	IS500	9	0	9	None	IS218	27
TOTAL		9	0	0			27

Sec ond Semester

DESCRIPTIVE TITE	COURSE CODE	TOTAL UNITS	$\begin{aligned} & \text { LEC } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { UNITS } \end{aligned}$	Co-REQ	Pre-REQ.	TOTAL HRS/WK
Capstone Project	IS501	3	3	0	None	IS500	3
IS Elective 4	IS304	3	3	0	None	None	3
Free Elective 2	IS402	3	3	0	None	None	3
Free Elective 3	IS403	3	3	0	None	None	3
Social Science 5	GE305	3	3	0	None	None	3
Huma nities 3	G E403	3	3	0	None	None	3
TOTAL		18	18	0			18
BSIS TOTALS		161	147	14			

Section 10. Thesis/ capstone project

Thesis is a requirement for the BSCS program. Contents must be focussed on the theories and concepts of computing and it should be in the form of scientific work that may be presented in a public forum.

Capstone project is required for the BSIT and BSIS programs. It should be in the form of a systems applic ation or an enterprise resource plan.

Section 11. Intemship/On-the-job-training/Practic um. Intemship/OJT/Practic um is an immersion program wherein the students will have the chance and opportunity to be with the IT industry. This program is important because the students will have the chance to apply the skills, knowledge and attitude leamed in the school and at the same time the opportunity to experience the comorate environment. Leaming expectations in the IT related field should be established between the HEI and the industry in the form of a Memorandum of Agreement (MOA) or Memorandum of Understanding (MOU).

Intemship is a requirement for the BSIT and BSIS program but optional for the BSCS program. Students are eligible to enrol the intemship program after completing the 80% of the total number of units in the curric ulum. The minimum number of intemship hours for the BSTT a nd BSIS programs are 486 and 162 for the BSC S program.

ARICLE VI COURSE SPECIICATIONS

Section 12. All courses for the three (3) programs should have the following components:

- Course name
- Course Description
- Course objectives
- Number of units for lecture and laboratory
- Number of contact hours perweek
- Prerequisites
- Course outline
- Laboratory
- Equipment
- Texts and References

Annex A contains the course specification for the three (3) ITE programs (core and professional courses).

ARICLE VII OTHER REQUREMENTS

Section 13. Administration
13.1 Composition - A well-organized and competent staff and faculty shall administer the implementation of an TE program and should meet the requirements set by the Commission.
13.2 A Higher Education Institution (HEI) offering an ITE program shall have a fulltime administrator that will administer the program. This administrator can be a Dean, Department Head, Director, Coordinator or equivalent depending on the organizational structure of the HEI.
13.2.1 Forone (1) program offering, the program administrator may also serve as the program head for the specific program being offered. For two (2) or more program offerings, there should be one program head for each program offered. If the programs offered are under a larger unit like a college, an administrator, who maybe one of the program heads, is still required.
13.2.2 There should be three (3) full-time IE faculty members per program offered, one of whom can be the program head. A full-time faculty should render at least twenty-four (24) hours in residence per week and have a minimum contract of one (1) year in the college/department.
13.2.3 The department must also ensure that sixty percent 60% of all πE courses in each program are handled by a full-time faculty members.
13.2.4 At least twenty percent (20%) of the TE faculty must have IT industry experience within the last 5 years. Industry experience may be full-time work or part-time consultancies in an IT Industry as evidenced by a contract, certification or MOA/MOU. The involvements are in the form of tec hnic al administration, systems design, a pplic ations programming, research, project management or equivalent.
13.2.5 At least sixty percent (60%) of the ITE faculty members must have completed a minimum of eighteen (18) units of master's study in ITE or
three (3) years of Π-related industry experience within the last five (5) years.
13.2.6 At least 30% of the faculty members handling ITE courses must have master's degrees in each program offered by the department.
13.3 General Qualifications of the Dean - The Dean of an mE program must possess a ny one of the following:
13.3.1 Master's degree in an ITE program, at least three (3) years of IT work/consultancy experience, and at least three (3) years of πE teaching experience beyond computer literacy both of which must be within the last five (5) years.
13.3.2 A master's degree in an ITE allied program plus at least one of the following:
13.3.2.1 Completion of coursework requirements for a master's degree in any ITE programs;
13.3.2.2 Five (5) years experience in systems design, applications programming, IT project management, or information technology research within the last eight (8)years;
13.3.3 Doctorate in an ITE program and at least three (3) years of IT work/consultancy experience within the least five (5) years.
13.3.4 Doctorate in an ITE allied program, at least three (3) years of work/consultancy experience, at least five (5) years of π teaching experience beyond computer literacy both of which must be within the last five (5) years.

13.4 General Qualific ations of the Program Head

13.4.1 Bachelor of Science in Computer Science (BSCS) - The head of BSCS program should posses any of the following qualifications:
13.4.1.1 A master's degree in CS;
13.4.1.2 A master's degree in IT or IS provided that his bachelor's degree is in CS;
13.4.1.3 A master's degree in an ITE allied program plus at least one of the following:
13.4.1.3.1 Completion of coursework requirements for a master's degree in Computer Science;
13.4.1.3.2 Five (5) years experience in systems design, applications programming, IT project management, or computer science research within the last eight (8) years.
13.4.1.4 A doctorate in an TE allied program plus five (5) years experience teaching ITE (beyond computer literacy courses) within the last eight (8) years.
13.4.2 Bachelor of Science in Information Technology (BSTT)

Bachelor of Science in Information System (BSIS)
the head should posses any of the following qualifications:
13.4.2.1 A master's degree in any ITE program;
13.4.2.2 A master's degree in an ITE allied program plus at least one of the following:
13.4.2.2.1 Completion of coursework requirements for a master's degree in any of the ITE programs;
13.4.2.2.2 Five (5) years experience in systems design, applications programming, IT project management, or information technology research within the last eight (8) years;
13.4.2.3 A doctorate in an TE allied program plus five (5) years experience teaching ITE courses (beyond computer literacy courses) within the last eight (8) years.
13.5 General Functions and Responsibilities of the Dean - The general functions and/or responsibilities of the Dean should be asfollows, thus:
13.5.1 To assist in the formulation of institutional policies;
13.5.2 To exercise overall supervision of all academic and non-academic personnel of the Tcollege ordepartment;
13.5.3 To coordinate with the office concemed with student services;
13.5.4 To encourage research and extension activities among faculty and students;
13.5.5 To oversee the formation, implementation and evaluation of plans and programs for development and the supervision/coordination of activities and services for the advancement of goals and objectives of the IIE program;
13.5.6 To help enforce the concemed HEI's rules and the laws affecting education, and the procedures, policies, rules and regulations promulgated under authonity of or as adopted by the Commission and/or the HEl;
13.6 General Functions and Responsibilities of the Program Head - The general functions and/or responsibilities of the Program Head should be as follows:
13.6.1 To exercise educational leadership among the concemed faculty members by:
13.6.1.1 recommending faculty and staff development programs;
13.6.1.2 preparing and assigning the teaching load of the faculty members and directing them to advise students in their program of studies; and
13.6.1.3 evaluating and recommending the appointment, promotion, retirement, termination of and disciplinary actions against faculty members and non-teaching personnel, subject to the HEl's policies and procedures;
13.6.2 To undertake periodic curiculum review, revision, and development with the assistance of the faculty members in the degree program concemed; and
13.6.3 To prepare course offerings, institute methodologies of instruction, adopt proper textbooks and recommend books to add to the collection of the library.

Section 14. IE Faculty. - An ITE fa culty should posses the following qualific ations:

14.1 Qualifications.

14.1.1 A baccalaureate degree in any IE or its allied programs.
14.1.2 A baccalaureate degree in a field other than TE or its allied programs plus a ny of the following:
14.1.2.1 completion of coursework requirements for a master's degree in a ny of the ITE programs;
14.1.2.2 at least three (3) years experience in the IT profession such as technical administration, systems design, applications programming or equivalent within the last 5 years.
14.1.2.3 proficiency in teaching ITE courses as proven by a certification issued by a certifying body such as the Philippine National IT Standards (PhilNITS), Brainbench, Oracle or Microsoft etc., provided that the teaching load assigned to him/her is aligned with the area of the certification.
14.1.3 A master's degree in an ITE program.
14.1.4 A master's degree in an ITE allied program plus at least one of the following:
14.1.4.1 One (1) IT related research published and presented in national or intemational conference. The IT related research should contribute to the field of ITand not in social science.
14.1.4.2 Three (3) years experience in the π profession such as technical administration, systems design, applications programming or equivalent within the last 5 years.
14.1.4.3 Proficiency in tea ching ITE courses as proven by a certification issued by a certifying body such as JTSE or Microsoft etc., provided that the teaching load assigned is aligned with the area of the certification.
14.1.5 A doctorate in an IE program.
14.1.6 A doctorate in an ITE allied program plus five (5) years experience teaching ITE courses beyond computer literacy courses within the last eight (8) years.

14.2 Load.

14.2.1 Assignment - The regular load of an TE faculty member is twenty-four (24) contact hours per week inclusive of lecture and laboratory. Overload should not exceed six (6) hours. There should not be more than four (4) preparations perterm.
14.2.2 Teaching Load. - As a general rule, in case the Dean has to teach, his or her teaching load should not exceed nine (9) contact hours per week. This load takes into consideration the functions of the Dean. For the department chair, his/her teaching load should not exceed twelve (12) contact hours.
14.3 Employment Status. - Full-time regular faculty is defined as a faculty member receiving monthly compensation throughout the year inclusive of all other employment incentives and benefits as mandated by the Labor Code. They should render at least twenty-four (24) hours in residence per week in the college/department.

14.4 Faculty Support

14.4.1 Faculty Development Program. - The college/department should have a written comprehensive faculty development program. There shall be a specific budget allocation to implement such program. HEls are enjoined to send full-time ITE faculty members to participate in various activities of professional organizations like Philippine Society of I.T. Educators (PSTE), Computing Society of the Philippines (CSP), Philippine Computer Society (PCS), etc. and to attend in various professional development programs in his/her field as well as graduate studies in ITE.
14.4.2 Facilities. The HEl should provide office space, computers with Intemet connections and printers for faculty and administrators. Consultation areasforstudents are also required.

Section 15. General Education Faculty. - All faculty members handling general education subjects must have appropriate master's degree or higher degrees in their respective teaching assignments.

Section 16. Library

16.1 Librarian(s). - HEls offering ITE should have at least one (1) full-time licensed librarian. The librarian(s) shall participate in faculty meetings and activities and serve as (a) member(s) of the educational program planning committee. The librarian(s) should work closely with the Dean or Department Chair in collection development for the ITE program.

The librarian(s) should be encouraged to join recognized librarian societies and associations for professional development.
16.2 Book Collection. - The library collection of the HEl should meet the following requirements, namely:
16.2.1 To support HEl's curricular needs and to provide enough books for students, its library should have at least five (5) titles per professional course and one (1) volume per course of a particular year of the curiculum for every ten (10) students enrolled in that year. At least twenty percent (20\%) of the books should have been published within the last four (4) years. Book holdings should preferably include more reference books and textbooks rather than vendor specific technology books.
16.2.2 For initial offering, the minimum volumes of Π books covering first to third yearcourses are required to be found in the Library. For program recognition, an HEI should have the required number of books in all four-year levels.
16.2.3 The library should include significant holdings of up-to-date computer magazines, joumals and periodicals that are published locally and intemationally. This includes at least two (2) public ations per program.

The HEl should have current subscription to the joumals and magazines. Paid online / digital subsc riptions to at least twenty (20) joumal titles are allowed as substitute for joumals and magazines provided that they can be readily accessed and printed by faculty, students and staff.
16.2.4 The library must provide students with access to manuals for programming languages and computer systems, as well as documentation materials related to the development and use of systems that were purchased by the HEls.
16.2.5 The library must provide Intemet terminals to allow faculty members and students to undertake research and other academic activities.
16.2.6 The library must provide access (with capability to read or print) to electronic library materials such as CD-ROMs and electronic subscriptions. These are considered as additional library holdings beyond the minimum requirements.
16.3 Space Requirements. - The library should have a seating capacity of at least five percent (5\%) of the total students enrolled.

Section 17. Facilities and Equipment

17.1 Classroom Requirements. Classroom space should at least be 1.2 square meters per student. For a class size of 40 students, the room should be at least 48 square meters; for 50 students, 60 square meters. It should be well lighted and well ventilated and/or air-conditioned. The classroom should preferably have two exit doors opening outwards. There should be at least one classroom per one hundred thirty-five (135) students enrolled. The maximum class size should be fifty (50) students only.
17.2 Laboratory Requirements. The HEl must provide for networked computer laboratories required for hands on training of the students. The laboratory floor space should be at least 2.0 square meters per student. For the computer laboratory, there should be a ratio of one (1) student per teminal or workstation. The number of terminals or workstations should be such that a student is provided at least nine (9) hours of individual hands-on computer time per week. On the basis that each computer terminal or work station operates effectively at least ten (10) hours a day and five (5) days a week, the computer time requirement should translate to at least one computer per ten (10) students enrolled in the ITE program, the computers being exclusively for their use. A laboratory assistant, whom at least a junior IT student and not assisting a class of the same or higher year level is required for laboratory class with more than thirty (30) students.

Networked laboratory must have one printer for every 15 computer units or be connected to at least one (1) high speed printer (at least 30 pages per minute) for students' access.

For initial offerings, the HEl should have at least two laboratories with 15 workstations each. One of the laboratories should be dedicated for the use of the ITdepartment.
17.3 Laboratory Equipment The required computer hardware and software should be able to respond to the objectives of the courses in the curiculum. They should conform to generally accepted industry standards and be capable of providing training in multiple platforms. At least thirty percent (30\%) of the equipment should have been manufactured within the last three (3) years.
17.4 Audio Visual Facilities. - As a general rule, the HEl should provide the necessary audio-visual equipment in support of the teaching-leaming process, such as overhead projectors, LCD projectors, etc.

ARIICLE VIII
 TRANSTIORY, REPEALNG AND EFFECTIVITY CLAUSE

Section 18. Transitory Clause. HEls that have been granted permit or recognition are hereby given three (3) years from the date of effectivity hereof to fully comply with all the requirements as stipulated in this CMO. Compliance to these requirements shall also be required to State Universities and Colleges (SUCs) and Local Colleges and Universities (LCUs). In the event that the HEI fails to comply, it is given a non-extendable period of two (2) years to comply.

Curently enrolled students in the program shall be allowed to graduate under the old curiculum. However, students enrolling for the ITE programs beginning school year 2007-2008 shall be covered by this CMO.

Section 19. Repealing Clause. All pertinent rules and regulations or parts thereof that are inconsistent with the provisions of theses policies and standards are hereby repealed ormodified accordingly.

Section 20. Effectively Clause. This CMO shall be effective beginning SY 2007-2008 after publication in the Official Gazette or in a newspaper of general circulation.

Pasig City, Philippines, \qquad

FOR THE COMMISSION:

CARUTO S. PUNO

Chaiman

Annex A course specific ation for the three (3) ITE programs (core and professional courses).

Bachelor of Science in Computer Science (BSCS) Program

COURSE NUMBER: CS101

TIILE: CS Fundamentals

- COURSE DESCRIPIION

This course provides an overview of computers, number systems, data types and representations, digital logic systems, assembly and machine language, compilers and translators, operating systems, and intemetworking.

- COURSE OBJ EC TIVES (DESIRA BLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. identify the basic components of a computer system
2. know the a rithmetic operations on number systems
3. understand how different data types are represented
4. understand the basic sof digital logic systems
5. identify the different levels of programming
6. know the functions of an operating system
7. know concepts of data communic ation, network components and protocols, the Intemet issues

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS

DATE

1. History of Computers
2. Computer Hardware
3. Computer Software
4. Introduction to Number Systems

- Number System Conversion
- Number System Operations
- Fixed-Point Number Representation
- Floating-Point Number Representation

5. Digital Logic Systems

- Logic Operationsand Gates
- Boolean Functions
- Canonical and Standard Forms
- Boolean Algebra Theorems and Properties
- Simplific ation of Boolean Functions
- Flip-flops, C ounters, Registers, PLAs

6. Controlling the Computer

- Assembly and Machine Language
- Compilers and Translators
- Programming Languages
- Operating Systems

7. Overview of Intemetworking

- Networking: Computer Connections
- Intemet: A Resource for All of Us
- Security a nd Privacy: Computers a nd the Intemet

COURSE NUMBER: CS102

TITLE: Computer Programming 1

- COURSE DESCRIPIION

This course introduces the students to the fundamentals of logic formulation together with their implementation in the C programming language. This course should serve as a foundation forstudents in the Computer Science program.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1 Leam the components in problem solving
2 Explore the strategies in problem solving in relation to procedural programming
3 Analyze problems
4 Design algorithms to solve problems
5 Implement algorithms in a programming language
6 Test programming solutions to problems
7 Apply recursion as a programming solution

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Steps in Program Planning and Development 2. History/Principles of the (Programming La nguage used) 3. Expressions 4. Basic Program Structure - Variable Declaration - Assignment Statement - Input/Output Statements 5. Using Conditional Constructs - Single Selection Construct - Multiple Selection Construct 6. Using Looping Constructs - Event-Controlled Loop Construct - Count-Controlled Loop Construct 7. Using Functions - Concepts and Rules - Functions and Parameter Passing 8. Recursion	

COURSE NUMBER: CS103

ITILE: Computer Programming 2

- COURSE DESCRIPIION

This is an advanced course for computer programming in C. It covers the data structures like a rray, list, a nd file. This course also should serve as a foundation for students in the Computer Science program.

- COURSE OBJ ECTIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Leam the components in problem solving
2. Explore the strategies in problem solving in relation to procedural programming
3. Analyze problems
4. Design algorithms to solve problems
5. Implement algorithms in a programming la nguage
6. Test programming solutions to problems
7. Understand various concepts of data structures

- COURSE OUIUNE AND TIMEFRAME

	DATE
1. Arrays - One-Dimensional Array - Sorting and Searching in an Array - Two-Dimensional Array 2. Strings 3. Structures - Structure Within a Structure - Array Within a Structure 4. Pointers - Concept of Heap, Stacks, and Memory Mana gement - Pointers Within a Structure 5. File Structures - Text File - Non-Text File	

COURSE NUMBER: CS104

TIILE: Discrete Structures 1

- COURSE DESCRIPIION

This course introduces the foundations of disc rete mathematic sas they a pply to computer science. Topics include functions, relations and sets, basic logic, proof techniques, basic sof counting and introduction to digital logic and digital systems.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of the course, the student must be able to:

1. Perform operations associated with sets, functions and relations
2. Apply formal methods of symbolic prepositional and predicate logic
3. Discuss which kind of proof is best for a given problem
4. Compute permutations and combinations of sets

- COURSE OUTUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Functions, Relations and Sets	
2. Basic Logic	
- Propositional Logic	
- LogicalConnectives	
- Truth Tables	
- Normal Forms	
- Validity	
- Predicate Logic	
- Universal and Existential Quantification	
- Modus Ponens and Modus Tolens	
- Limitations of Predic ate Logic	
3. Proof Techniques	
4. Basic s of Counting	
5. Introduction to digital logic and digital systems	

COURSE NUMBER: CS105

TIILE: Computer Organization and Assembly Language

- COURSE DESCRIPIION

This course provides an overview of the architecture and organization of a computer, how it is built. It includes a disc ussion of the CPU, memory, I/O organization and peripherals.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Identify the different hierarchical views of a computer (gates, microprogram, machine language, assembly la nguage)
2. Write code in assembly language
3. Know the different devices and components of a computer system and how these components work to gether

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Review: Binary Number Systems	
2. Review: Fixed and Floating Point Representation	
3. Review: Logic Gates and Boolean Algebra (Simplific ation)	
4. Computer System (Von Neuma nn Arc hitec ture)	
5. CPU	
- Single Bus Architecture	
i. Overview of Assembly Programming	
ii. Microprogramming	
iii. Gating and Control Sequencing	
- Control Unit	
- Arithmetic and Logic Unit	
i. Addition (Half, Full, Fast Adder, CLA)	
ii. Subtraction	
iii. Multiplication (Algorithmic)	
iv. Division (Algorithmic)	
6. I/O Organization and Peripherals	
a. Magnetic Disk (Hard Disk)	
b. Keyboard	
c. Monitor (CRT)	
7. Memory	
a. Cache Memory (L1, L2, caching techniques)	
b. Virtual Memory	
c. Memory Interleaving	
Lab: Assembly Language Programming	

COURSE NUMBER: CS106

TIILE: PROFESSONALEIHICS

- COURSE DESCRIPIION

The course introduces ethics and ethical theories; provides disc ussions on the ethic al dilemmas a nd issues facing Π practitioners. An appreciation and disc ussion of the Code of Ethic s of I. T. Professionals; cyberc rimes and appropriate Philippine Laws are also included.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of the term, the students should be able to:

- Understand and appreciate the meaning of ethics, values and attitudes.
- Be guided in their ethical thinking and considerations asthey relate in the cyberworld.
- Be aware of the different ethic al dilemma/issues in the cybeword.
- Appreciate and intemalize the code of conduct of an I. T. Professional.
- Be fa miliar with the various Philippine Laws that penalizes cybercrimes.

- COURSE OUIUNE AND TIMEFRAME

1. Ethic S , values and attitudes.
2. The most common ethic al theories.
2.1 Ancient Greek - Plato
2.2 Medieval - Thomas Aquinas
2.3 Immanuel Kant
2.4 Rawl Theory J ustice
2.5 Egoism
2.6 Utilita ria nism
3. Ethic al Dilemma/ issues in the cyberworld
3.1 Privacy Invasion
3.2 Hacking
3.3 Sec urity
3.4 Theft
3.5 Copyright Infringement
3.6 Unfa ir Competition
3.7 Virus
3.8 Tele/videoconferencing
3.9 Online defamation
3.10 Piracy
3.11 Fraud
4. Ethics and Law
5. Applic able Philippine Laws that pena lize cybercrime
1.1. Intellectual Property Right
1.2. E-Commerce Law
1.3. Optical Law
1.4. Civil Code
1.5. Revised Penal Code
1.6. Special Criminal Law
1.7. Unfa ir Competition Act

1.8. Intemet Pomography

2. Govemment Agencies Responsible in the Implementation of the Philippine I. T. Programs
2.1. Commission on Information and Communic ation

Technology
2.2. National Burea u of Investigation
2.3. Department of J ustice

COURSE NUMBER: CS201

TIILE: Data Structures

- COURSE DESCRIPIION

This course introduces the students to the design and implementation of basic and advanced data structures. Topicsinclude basic data structures, trees, graphs and hashing.

- COURSE OBJ EC TIVES (DESIRA BLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Choose, implement and evaluate the appropriate data structures for specific programming problems and
2. Use and manage memory effectively in data presentation.

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Basic Data Structures - Arrays - Linked Lists - Stacks	
2. Trees - Binary Trees - Binary Search Trees - AVL - RB Trees	
3. Graphs - Representations - Search Algorithms (BFS, DFS) - Shortest Path Problems - Spanning Trees	
4. Sets 5. Hashing	

COURSE NUMBER: CS202

ITILE: Design and Analysis of Algonthms

- COURSE DESCRIPIION

A study on the design and a nalysis of algorithms, which introduces students to the techniques in basic algorithmic a nalysis, algorithmic strategies, sorting and searching, graph algorithms, and geometric algorithms.

- COURSE OBJ EC TIVES (DESIRABLE OBJ ECTIVES)

At the end of this course, the student should be able to:

1. Design effective, efficient, elegant, a nd readable algorithms for various classes of computing problems
2. Determine space and time complexity of algorithms
3. Use various algorithm design techniques (divide and conquer, backtracking, greedy, etc)

- COURSE OUTUNE AND TIMEFRAME

	DATE
1. Mathematic al Tools in Analysis - Proof Techniques - Recurrence Relation - Generating Functions 2. Basic Algorithmic Analysis a. Best, a verage, worst case behaviors b. Time and Memory Complexity 3. Algorithmic Strategies - Brute Force algonthms - Greedy algorithms - Divide-and-Conquer strategies - Backtracking - Branch-and-bound - Heuristics 4. Sorting and Searching 5. Graph Algorithms 6. Geometric Algorithms 7. NP-Completeness	

COURSE NUMBER: CS203

TIIE: Programming Languages

- COURSE DESCRIPIION

This course provides students the fundamental features and concepts to different programming languages. Topics include overview of programming languages, Introduction to language translation, type systems, data and execution control, declaration and modularity, and syntax and semantics.

- COURSE OBJ EC TIVES (DESIRA BLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Identify features of imperative languages, a nd their implementation (including the use of static memory, stack and heap for implementing variables)
2. Identify various programming paradigms (functional, declarative, imperative, object oriented), a nd their implementations
3. Describe the different phases in the language translation process.

- COURSE OUIUNE AND TIMEFRAME

	DATE
1. Overview of Programming Languages - \quad History of programming languages - Overview of Programming paradigms (procedural, object-oriented, functional, declarative, scripting languages) 2. Introduction to language translation - Comparison of interpreters and compilers - Language translation phases 3. Type Systems 4. Data and Execution Control 5. Declaration and Modularity 6. Syntax and Semantics 7. Object-Oriented Programming 8. Concurrent Programming Languages 9. Declarative Languages	

COURSE NUMBER: CS204

TIILE: Automata and Language Theory

- COURSE DESCRIPIION

This course introducesthe formal models of computing and their relation to formal languages.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Understand the principal models of computation such as finite a utomata, pushdown automata and Turing machines.
2. Recognize the correspondence of the different language classes to the models of computation.

- COURSE OUILNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Strings and Languages	
- Sets, relations, strings and string operations	
- Operationson languages	
2. Finite State Machines	
- Deterministic Finite Automata	
- Reg-deterministic Finite Automata	
3. Context-free Grammar	
4. Pushdown Automata	
5. Turing Machines	

COURSE NUMBER: CS205

TIIE: Modelling and Simulation

- COURSE DESCRIPIION

This course introduces the students to modelling and simulation concepts. Topics discussed in the course includes, system analysis and classification., abstract and simulation models, continuous, discrete, and combined models, heterogeneous models. It also covers pseudorandom number generation and testing, queuing systems, Monte Carlo method, and continuous simulation. Simulation experiment control.

- COURSE OBJ EC TIVES (DESIRABLE OBJ ECTIVES)

At the end of this course, the student should be able to:

1. Attain generic leaming outcomes and competences:
2. Understand the principles of simulation
3. Create simulation model of various types
4. Verify, and validate simulation models.

- COURSE OUIUNE AND TIMEFRAME

1. Introduction to modelling and simulation.
2. System a nalysis, clasific ation of systems. System theory basics, its relation to simulation.
3. Model classific ation: conceptual, abstract, and simulation models. Heterogeneous models. Methodology of model building.
4. Simulation systems a nd la ngua ges, means for model and experiment description. Princ iples of simulation system design.
5. Parallel process modelling. Using Petri nets a nd finite a utomata in simulation.
6. Models o queuing systems. Disc rete simulation models. Model time, simula tion experiment control.
7. Continuous systems modelling. Overview of numerical methods used for continuous simulation.
8. Combined simulation. The role of simulation in digital systems design.
9. Special model classes, models of heterogeneous systems.
10. Checking model validity, verific ation of models. Analysis of simulation results.
11. Simulation results visualization. Interactive simulation, virtual reality.
12. Design and control of simulation experiments. Model optimization.
13. Generating, transformation, and testing of pseudorandom numbers. Stochastic models, Monte Carlo method.
14. Overview of commonly used simulation systems.

COURSE NUMBER: CS206

TIILE: Digital Design

- COURSE DESCRIPIION

This course provides an overview of the principles underlying number systems, logic gates, Fixed-Point Representation, Boolean Function, Boolean algebra, combinational and sequential logic circuits, flip-flops, registers, a nd PLAs.

- COURSE OBJ EC TIVES (DESIRABLE OBJ ECTIVES)

At the end of this course, the student should be able to:

1. Identify building blocks of Von Neumann machine.
2. Design simple combinational and sequential circuits.
3. Apply minimization techniques (Ka maugh maps) to Boolean expressions.

- COURSE OUTUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Number Systems (Binary)	
2. Fixed-Point Representation (1's a nd 2's complement)	
3. Logic Gates	
4. Boolean Function	
• Canonic al and Standard Format	
5. Truth Table	
Boolean Algebra	
• Simplific ation using Properties	
6. Combimptification using K-Map	
7. Sequential Logic Circ Circ uits	
8. Flip-flops, registers, PLAs	

COURSE NUMBER: CS205

TIIE: Modelling and Simulation

- COURSE DESCRIPION

This courses introduces the students to modelling and simulation concepts. Topics discussed in the course includes, system analysis and classification., abstract and simulation models, continuous, discrete, and combined models, heterogeneous models. It also covers pseudorandom number generation and testing, queuing systems, Monte Carlo method, and continuous simulation. Simulation experiment control.

- COURSE OBJ EC TIVES (DESIRABLE OBJ ECTIVES)

At the end of this course, the student should be able to:

1.	Attain generic leaming outcomes and competences:
2.	Understand the principles of simulation
3.	Create simulation model of varioustypes
4.	Verify, and validate simulation models.

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS

DATE

1. Introduction to modelling and simulation.
2. System a nalysis, clasific ation of systems. System theory basics, its relation to simulation.
3. Model classific ation: conceptual, abstract, and simulation models. Heterogeneous models. Methodology of model building.
4. Simula tion systems and languages, means for model and experiment description. Princ iples of simula tion system design.
5. Pa rallel process modelling. Using Petri nets and finite a utomata in simulation.
6. Models o queuing systems. Disc rete simulation models. Model time, simulation experiment control.
7. Continuous systems modelling. Overview of numerical methods used for continuous simulation.
8. Combined simulation. The role of simulation in digital systems design.
9. Special model classes, models of heterogeneous systems.
10. Checking model validity, verific ation of models. Analysis of simulation results.
11. Simulation results visualization. Interactive simulation, virtual reality.
12. Design a nd control of simulation experiments. Model optimization.
13. Generating, transformation, and testing of pseudorandom numbers. Stochastic models, Monte Carlo method.
14. O verview of commonly used simulation systems.

COURSE NUMBER: CS206

TIILE: Digital Design

- COURSE DESCRIPION

This course provides an overview of the principles underlying number systems, logic gates, Fixed-Point Representation, Boolean Function, Boolean algebra, combinational and sequential logic circuits, flip-flops, registers, a nd PLAs.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Identify building blocks of Von Neumann machine.
2. Design simple combinational and sequential circuits.
3. Apply minimization techniques (Ka maugh maps) to Boolean expressions.

- COURSE OUILNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Number Systems (Binary) 2. Fixed-Point Representation (1's and 2's complement)	

3. Logic Gates
4. Boolean Function

- Canonicaland Standard Format
- Truth Table

5. Boolean Algebra

- Simplific ation using Properties
- Simplific ation using K-Map

6. Combinational Logic Circ uits
7. Sequential Logic Circuits
8. Flip-flops, registers, PLAs

COURSE NUMBER: CS207

TIIE: Operating Systems

INSTRUCTOR:

- COURSE DESCRIPIION

This course provides an introduction to the concepts, theories and components that serve as the bases for the design of classic al and modem operating systems. Topics include process and memory management, process synchronization and deadlocks.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Desc ribe relationships between system services and application software
2. Compare and contrast different design considerations formajor OS components

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Overview of Operating Systems	
- History	
- Functionality of a typical OS	
2. OSstructures	
Process Management	
Process concept	
3. Memocess scheduling	
4. MVT, Pagagement	
4. Virtual Memory, Segmentation	
5. File Manand Paging	

6. Deadlocks

- Prevention
- Avoidance
- Detection and Recovery

7. Concurrent Processes

- Synchronization
- Classical Problems (Producer-Consumer, ReadersWriters, Dining Philosophers)

COURSE NUMBER: CS208

TIIE: NEIWORKS and INIERNETTECHNOLOGY

- COURSE DESCRIPIION

This course provides an in-depth disc ussion of computer networks. It includes a detailed discussion of the different Network Models. Concepts that have a direct effect on the efficiency of a network (e.g. collision and broadcast domains, topology) are also discussed. Concepts on different network technologies, distributed computation, networking, and communication software, and security issues are also disc ussed.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

Towards the end of the course, students are expected to / able to:

- Be familiar with the different Network Models.
- Understand different network tec hnologies
- Understand the effects of using different networking topologies
- Be updated with different advanced network technologies that can be used to connect different networks
- Be familiarwith various hardware and software that can help protect the network
- Know the advantage of using a network management system

- COURSE OUILNE AND TIMEFRAME

1. Introduction to Computer Networks
2. Overview of Networking Models
3. OSI
4. $T C P / I P$
5. Physical Layer
6. Data Link Layer
7. Network Layer
8. Transport Layer
9. Application Layer
10. Network Topologies
11. Network Security

- REQUIRED READINGS

Computer Networks, 4th Edition

Andrew S. Tanenbaum

Computer Communic ations and Networking Technologies

Michael A. Gallo, William M. Hancock

- SUGGESTED READINGS

Business Data Communic ations and Networking, 7th Edition
 Jemy FitzG erald, Alan Dennis

COURSE NUMBER: CS210

TIILE: Calc ulus

- COURSE DESCRIPIION

A course covering the real number system as a complete, ordered field; topological properties of R and R2, limits a nd continuity.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. Understand properties of the number systems
2. Perform derivatives
3. Compute for areas under the curve and other applications

- COURSE OUIUNE AND TIMEFRAME

TOPICS AND READINGS	DATE
1. Exponential and trigonometric Functions	
2. The determinant and the cross product	
3. Vectors and geometry.	
4. Differentiation	
5. Derivatives in higher dimensions, directional derivative and	
gradient.	
6. Computation of derivatives.	
7. Differentiation by rule.	
8. Vectorderivativesand properties	
9. Higherderivatives and taylor series.	
10. Quadratic approximations in two dimensions.	
11. Applicationsof the linear approximation.	
12. Maxima and minima.	
13. Curves	
14. Complex numbers and functions.	

15. The a ntiderivative.
16. Area under a curve.

COURSE NUMBER: CS211

TIILE: Object-Oriented Programming

This course provides the students with the fundamental understanding of objectoriented programming using Java. It introduces the different concepts that are commonly associated with object programming.

- COURSE OBJ EC TIVES (DESIRABLE OBj ECTIVES)

At the end of this course, the student should be able to:

1. design the classes needed given a problem specification;
2. implement the designed classes using the object oriented programming language
3. leam how to test, verify, and debug object-oriented programs; and
4. create program using object-oriented principles.

- COURSE OUIUNE AND TIMERRAME

	DATE
1. Object-Oriented Concepts Procedural Programming vs. Object-Oriented Programming - Abstract Data Types (ADTs) - Object-Oriented Programming Concepts 2. Java Fundamentals-Anatomy of a Basic Java Program - Comments - Primitive Data Types - Expressions and Operators - Reference Types - Statements 3. Objects and Classes in J ava - Classes - Access Modifiers - Methods and Attributes - Constructors - Class Methods and Class Variables 4. Object-Oriented Programming in J ava - Inheritance: Superclass and Subclass - Encapsulation - Method Ovemiding - Polymorphism 5. OtherJava Classes - AbstractClass - Interfaces	

6. GUI Development

- AWTGraphical Components
- Event Handling
- AnonymousClasses

7. Exception Handling

- Try, Catch, and Finally
- Creating Exceptions
- Exception Hierarchy

8. Thread

- Thread Lifecycle
- Thread Synchronization
- Critical Sections

9. Collections Framework

- Collection
- Set
- List
- Map

10. Input and Output Streams

- InputStream/OutputStream Classes
- Reader/Writer Classes
- File HandlerClasses

